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a b s t r a c t

This review covers developments in non-invasive techniques for quality analysis and inspection of spe-
cialty crops, mainly fresh fruits and vegetables, over the past decade up to the year 2010. Presented and
discussed in this review are advanced sensing technologies including computer vision, spectroscopy,
X-rays, magnetic resonance, mechanical contact, chemical sensing, wireless sensor networks and radio-
frequency identification sensors. The current status of different sensing systems is described in the
context of commercial application. The review also discusses future research needs and potentials of
these sensing technologies. Emphases are placed on those technologies that have been proven effective
or have shown great potential for agro-food applications. Despite significant progress in the development
of non-invasive techniques for quality assessment of fruits and vegetables, the pace for adoption of these
technologies by the specialty crop industry has been slow.

© 2010 Elsevier B.V. All rights reserved.
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. Introduction

Fifty years ago, a new approach to characterizing fresh food
aterials was created, which treated food items as physical bodies

o which conventional engineering concepts and methods could
e applied. The aim was to maintain and enhance the quality of
ood products as they go through different stages of operation from
arvest to postharvest handling to retailing.

Specialty crops are defined as “fruits and vegetables, tree nuts,
ried fruits and horticulture and nursery crops, including floricul-
ure” (USDA, 2004). Non-destructive (ND) testing for properties
nd characteristics of specialty crops is critical for monitoring and
ontrolling product quality and safety. Sensors play the key role
n identification of product properties, and thus they have been
n active research area, as evidenced by thousands of engineering
esearch publications during the past 50 years.

Quality sensing is needed or desired for most or all
gricultural commodities or foods at different stages of the produc-
ion/marketing chain. Specialty crops cover a wide, diverse variety
f commodities, which differ greatly in morphology, composition,
nd physiology. Hence it is customary to classify them into different
roups according to a specific criterion. Temperate fruits, including
pple, peach, pear, citrus, and table grape, are harvested manu-
lly for fresh consumption, or mechanically for processing. Tropical
ruits including avocado, banana, mango, and papaya are also hand
arvested, while dry (shell) fruits or nuts are often machine har-
ested. We should also mention that olive and grape are two fruit
rops of world significance; they are mainly machine harvested,
here sensors are being introduced for quality monitoring. Veg-

tables contain even a much greater number of commodities; they
re cultivated in different types of environments, including green-
ouse. For example, there are fruit vegetables (e.g., tomato, bell
epper, zucchini) and green leafy vegetables (e.g., lettuce, spinach,
abbage, small greens). Finally, ornamentals refer to potted flowers,
otted green plants and cut flowers.

After harvest, specialty crops may undergo all or part of these
ostharvest operations before being delivered to the consumer:
re-sorting, sorting, washing, refrigeration, grading (for quality
lasses), wrapping, and packaging (placing into cartons, small
oxes, baskets, bags, nets, etc.), cold-storage (for short term, i.e.,
ays) or controlled or modified-atmosphere storage (for long term,

.e., months). In addition, some commodities need such special
reatments as ripening using gases and temperature (peaches, cit-
us, bananas), individual wrapping (lettuce, broccoli, cauliflower,
ell peppers), cutting and small-bag wrapping (lettuce, mixed sal-
ds, fruits), or destruction (e.g., for olive oil and wine grape).
rnamental crops represent a large share of the total production for

he specialty crop industry. But there is still a lack of research and
rogress on development of sensors for ornamental crops, except
or automatic production and handling systems which have been

idely adopted by the industry.

Specialty crops are living biological products that the consumer
xpects them to be in the best quality and safety condition. Fresh-
ess and quality, which are important to the consumer, are affected
y time, handling procedure, environmental conditions, and the
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

processes to which they undergo. At each of these steps, the fresh-
ness and quality of specialty crop products need to be monitored
and controlled. Traditional manual expertise for quality inspection
is no longer adequate nowadays, and only sensors can provide solu-
tions for monitoring and controlling the quality of specialty crops.

A number of reviews on non-invasive, fast technologies for fruit
and vegetables quality sensing have been published (Chen and Sun,
1991; Abbott et al., 1997; Studman, 2001; Butz et al., 2005). Many
of these review papers covered a broad range of sensing tech-
niques, with a selected few that also discussed the feasibility of
these techniques for industrial applications (Abbott, 2004; Walsh,
2005). Moreover, several recent reviews are focused on selected
techniques, such as mechanical methods for firmness measure-
ment (García-Ramos et al., 2005), size characterization techniques
(Moreda et al., 2009), computer vision (Brosnan and Sun, 2002;
Du and Sun, 2006), near-infrared (NIR) spectroscopy (Nicolai et
al., 2007), nuclear magnetic resonance (NMR) (Aristizábal, 2007),
biosensing (Mello and Kubota, 2002; Patel, 2002), wireless sensing
(Ruiz-Garcia et al., 2009), and plant diseases detection (Sankaran et
al., 2010). The needs for this area of research are mainly driven by
the specialty crop industries to meet increasing consumer demand
for better quality and safer fresh products.

A large number of recent publications on non-destructive detec-
tion of food quality are related to the utilization of electromagnetic
radiation in a wide range of frequencies. Electromagnetic radiation-
based technologies have shown great potential; some of them have
been successfully used for monitoring the quality of specialty crops.
Successful application of these technologies requires the combina-
tion of effective sensors with sophisticated mathematical models
and computer algorithms to establish relationships between
selected physical/chemical properties and quality attributes of the
product. As a result, a large number of papers published recently
are focused on utilizing different non-destructive (ND) optical tech-
niques for quality detection of agro-food products. Great advances
have been made in spectroscopy and computer vision, and these
techniques are being widely used for quality inspection and con-
trol of products in many industries including food. As technologies
based on VIS, NIR, mid-infrared (MIR), and ultra-violet (UV) are
becoming more affordable and equipped with more user-friendly
data treatment and calibration capabilities, they have fostered fur-
ther development of detection procedures for different quality- and
composition-related properties of fruits and vegetables.

Over the past 10 years, a number of new technologies based on
electromagnetic properties have emerged, whereas great progress
has also been made on other existing technologies. They include
X-ray, nuclear magnetic resonance (NMR) or magnetic resonant
imaging (MRI), fluorescence, and with less success until now, elec-
trical impedance and permittivity (mainly microwave), thermal
sensing and selective gas/volatile sensing. These developments
have opened new areas of research as well as new applications for
M. Ruiz-Altisent et al. / Computers and Electronics in Agriculture 74 (2010) 176–194 177
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sensing quality of specialty crops.
This review covers different sensing techniques, with emphasis

on those emerging technologies like NMR, MRI, wireless sensor net-
works (WSN) and radio-frequency identification (RFID), for fruits
and vegetables and their potential for industrial applications.
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. Computer vision for internal quality

Numerous review articles have been published on computer
ision technology for quality inspection of food and agricultural
roducts (Chen et al., 2002; Brosnan and Sun, 2004; Aguilera and
riones, 2005) and horticultural products in particular (Abbott,
004; Butz et al., 2005; Nicolai et al., 2007). This section pro-
ides a brief review of selected vision technologies, especially those
merging technologies that are showing great promise for assess-
ng internal quality of horticultural products, i.e., sensory attributes
texture and flavor), nutritive values, chemical constituents, func-
ional properties and internal defects or physiological disorders.

.1. Visible/near-infrared

The reflectance properties of a product in the visible region
approximately 400–780 nm) are perceived by humans as color,
hich provide pigment information about commodities. Skin color
as been considered indicative of maturity for some horticultural
roducts such as banana, mango, and tomato (Edan et al., 1997).
olor, in the human perception directly relates to product appear-
nce (Abbott, 1999), and the relationship of pigments, and therefore
he VIS reflectance fingerprint, with deterioration and evolution of
ruits during ripening has been established. Many constituents of
ruit quality, including those that contribute to taste and aroma
s well as antioxidant potential are synthesized in chloroplasts or
hromoplasts, and in the genes (Barry, 2009). In the food indus-
ry, quality factors are often linked to product pigments or color
eatures. VIS imaging sensors are thus effective techniques for qual-
ty detection of fruits, especially for maturity and ripeness. Similar
esults have been established in green plants.

Broadband images (i.e., gray-scale and color images) are inap-
ropriate for detecting specific quality attributes (other than color
ttributes or certain surface blemishes that are visible) because
any chemical components (pigments, sugar, starch, water, pro-

ein, etc.) are sensitive to specific narrow wavebands in or beyond
he visible region. Hence spectral imaging technology, which
cquires single or multiple images at selected wavelengths, is used
or detection of specific quality attributes of horticultural products.
pectral imaging may be categorized into multispectral and hyper-
pectral. Multispectral imaging acquires spectral images at a few
iscrete narrow wavebands (the bandwidth may range between
and 50 nm). Hyperspectral imaging, on the other hand, acquires

ens or hundreds of spectral images at congruous wavelengths or
avebands over a specific spectral region.

Multispectral imaging has been used to detect quality-related
hemical components, such as fruit pigment concentration, and dis-
ribution of sugar (or soluble solids) in fruits (Peng and Lu, 2007).
ince color measurements usually give poor results for ripeness
ssessment and defect detection, NIR multispectral imaging tech-
ology has been developed and is now commercially available for

ruit blemish detection. The technology can achieve up to 90% accu-
acy in detecting damaged fruits with visible blemishes of greater
han 5 mm in diameter. Research also showed that multispectral
cattering images can be used to evaluate the firmness of fruits
Peng and Lu, 2007; Qing et al., 2007). The technique uses either
regular digital camera or a multispectral imaging device to cap-

ure spectral scattering images from the surface of a fruit generated
y a focused light beam (either monochromatic such as laser or
olychromatic) at single or multiple wavebands. Since scattering
rofiles are influenced by density, cell structures and chemical

omposition of the fruit, they can be related to fruit firmness
nd/or soluble solids content. Spectral scattering prediction of fruit
rmness showed good correlation (r ∼ 0.90) with Magness–Taylor
rmness measurement, the standard destructive penetration test
Peng and Lu, 2007; Qing et al., 2007). The technique is noncontact,
nics in Agriculture 74 (2010) 176–194

fast and relatively easy to implement; moreover, it could be used for
simultaneous assessment of fruit firmness and soluble solids con-
tent. However, the technique, like NIR spectroscopy which captures
spectral information, relies on calibration models to predict fruit
firmness and/or soluble solids content. In addition, fruit shape and
size need to be considered for better characterization of spectral
scattering features.

Hyperspectral imaging integrates the main features of imaging
and spectroscopy to acquire both spectral and spatial information
from the product simultaneously, thus making it especially suit-
able and much more powerful for inspecting horticultural and food
products, whose properties and characteristics often vary spatially
(Kim et al., 2001; Gowen et al., 2007). Hyperspectral imaging is
commonly implemented in one of the two sensing modes: push-
broom or line scanning mode and filter-based imaging mode (Lu
and Chen, 1998). In-line scanning mode, the imaging system line
scans the moving product items, from which three-dimensional
(3D) hyperspectral images, also called hypercubes, are created. In
filter-based imaging mode, spectral images are acquired from the
stationary product items for a sequence of wavebands using either
liquid crystal tunable filter (LCTF) or acousto-optic tunable filter
(AOTF). Line scanning mode is most commonly used because it
is relatively easy to implement, especially when real-time, online
applications are needed. Filter-based hyperspectral imaging sys-
tems require more complicated calibration and are not suitable for
online applications. A hyperspectral imaging system needs a high
performance digital camera covering the spectral region of inter-
est and having a large dynamic range (12-bit or higher is preferred),
low noise level (with a cooling device to reduce the sensor’s thermal
noise), and good quantum efficiency. Moreover, an imaging spec-
trograph, which disperses line images into different wavelengths,
is an essential component for a line scanning hyperspectral imag-
ing system; it should have an appropriate optical resolution and
spectral response efficiency with minimal aberrations. In addition,
it is critical to have an appropriate DC-regulated light source that is
highly stable, with smooth spectral response. Those who have suf-
ficient knowledge and experience in optics and imaging may use
off-shelf optical components to assemble a hyperspectral imaging
system to achieve cost savings and meet their specific application
needs in the laboratory. However, most users would be better off
by purchasing a turn-key hyperspectral imaging unit from a com-
mercial company (e.g., Headwall Photonics Inc. and Themis Vision
Systems in U.S. and Specim in Finland).

Hyperspectral imaging technology was used for measuring fruit
maturity, firmness and soluble solids content (ElMasry et al., 2007;
Lu and Peng, 2007; Noh et al., 2007), and for detecting bruises and
bitter pits on apple and mushroom (Nicolaï et al., 2006; Gowen
et al., 2008) deterioration in mushroom (Taghizadeh et al., 2010)
and chilling injury and internal defect of cucumber (Cheng et al.,
2004; Ariana and Lu, 2010). A spatially resolved technique based
on hyperspectral imaging was developed for measuring the spec-
tral absorption and scattering properties of horticultural and food
products (Qin and Lu, 2008). Because of its ability to acquire a large
amount of spatial and spectral information, hyperspectral imag-
ing will find more and more applications in quality and also safety
inspection of horticultural and food products in the coming decade.
However, two major issues need to be addressed in application
of the technology. First, hyperspectral imaging acquires spectral
images at contiguous wavelengths and considerable redundancy
exists in the hyperspectral image data. Therefore an effective algo-
rithm is needed to reduce the data dimensionality and identify

most useful features with fewer wavebands. While many generic
application algorithms have been developed for this purpose, it is
important that the users choose an appropriate one that would
meet their application needs. Second, up to now, speed and time
needed to acquire and process a huge amount of image data has
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een the impediment to real-time, online application of the tech-
ology. However, as the sensor and computer technologies are
volving rapidly, it is now feasible to implement hyperspectral
maging technology for fast, online sorting and grading of horticul-
ural and food products (Chao et al., 2008; Ariana and Lu, 2010;
errero-Langreo, 2010). This opens a new horizon for effective
pplications of the technology for inspection of different quality
actors of horticultural products. The expected accuracy in dedi-
ated applications (of what???) is, based on present experiments,
0–90% correct classifications at least. Hyperspectral imaging can
e adapted and/or simplified to the use of indexes based on a small
umber of wavelengths, thus improving industrial feasibility.

.2. Fluorescence spectroscopy

Fluorescence spectroscopy measures the light of longer wave-
engths emitted from the object after it is excited with a beam of
ight of short wavelengths (usually in the ultra-violet region). For
he last 20 years, laser-induced fluorescence has been used for veg-
tative studies, such as to monitor stress levels and physiological
tates in plants (Belasque et al., 2008). Two types of fluorescence:
i) blue-green fluorescence in about 400–600 nm range, and (ii)
hlorophyll fluorescence in about 650–800 nm range, are produced
y green leaves. Fluorescence spectroscopy has been used to moni-
or nutrient deficiencies, stress and diseases in plants, in laboratory
r field conditions. Application of this technology to industrial pro-
esses is yet to be fully developed.

.3. X-rays

X-rays cover the spectral range of 0.01–10 nm, which falls
etween gamma rays and ultra-violet rays. X-rays can penetrate
hrough most horticultural products and the level of X-ray energy
ransmitted through the product depends on the incident energy
nd absorption coefficient, density and thickness of the prod-
ct. X-ray imaging is thus useful for evaluating quality/maturity
nd internal defect of horticultural products. Various X-ray imag-
ng technologies are available; they include X-ray radiography

hich scans layers of the product to create two-dimensional (2D)
mages and computed tomography or CT scanning which creates 3D
mages. X-ray imaging showed potential for evaluating the matu-
ity of peach, mango, and lettuce (Brecht et al., 1991; Barcelon et al.,
999a,b). Physiological disorder in the plant tissues and the pres-
nce of insects or foreign objects often cause changes in the density
nd water content of the product. Hence, X-ray imaging is particu-
arly useful for detecting various types of internal defects or foreign
bjects in horticultural products such as watercore and internal
rowning in apple, translucence in pineapple, freeze damage and
ry sections in orange and tangerine, pits or pit fragments in tart
herry and peach, and the presence of insects in fruit (Tollner et
l., 1992; Peiris et al., 1998; Shahin et al., 1999; Lammertyn et al.,
003a,b; Velasco and Medina, 2004; Hansen et al., 2005; Haff et al.,
006).

.4. Other vision technologies

Several emerging vision technologies such as near-infrared
NIR) tomography and terahertz imaging have recently received
onsiderable attention in medical diagnosis and non-destructive
valuation of non-food products (Gibson et al., 2005; Pickwell and
allace, 2006; Kemsley et al., 2008). NIR tomography provides
mages for the interior of an object. As NIR light (usually in the range
f 750–1300 nm) is injected into a turbid biological object, its atten-
ation and scattering is tracked by multiple sensors positioned at
ifferent locations from the incident point, and 2D or 3D images are
onstructed by using inverse algorithms to solve an appropriate dif-
nics in Agriculture 74 (2010) 176–194 179

fusion theory model. However, since light scattering is dominant in
the region of 700–1300 nm, it presents considerable technological
challenges in obtaining high resolution images.

Terahertz imaging technology represents another new fron-
tier for non-destructive evaluation of food and biological materials
(Pickwell and Wallace, 2006). Terahertz radiation refers to the
spectral region of 0.1–3 mm, falling between the far infrared and
microwaves. Terahertz rays correspond to the energy level of
molecular rotations and vibrations of DNA and protein, and hence
they may provide spectral fingerprints for biological tissues. Ter-
ahertz wavelengths are sensitive to water and the technique can
thus be useful for assessing tissue condition. The technology is still
in an early development stage, but it could present some interesting
opportunities in quality evaluation of horticultural products.

Thermal imaging (TI) is another emerging technique for non-
invasive analysis in the food industry. Recent advances and
potential applications for TI for food safety and quality have been
reviewed (Gowen et al., 2010). Temperature mapping, measuring
infrared radiation (long wave greater than 8 �m) emitted by the
body surface, where temporal and spatial distribution patterns are
obtained, shows potential for food product quality and safety moni-
toring. While applications are reported for apple, tomato (detection
of bruises), potato (freezing damage) and citrus (drying time), the
technology is still in experimental stage.

3. Nuclear magnetic resonance (NMR) spectroscopy and
imaging

Since the discovery of the magnetic resonance phenomenon in
1946 and subsequent achievements, nuclear magnetic resonance
(NMR) has become one of the most significant non-invasive tech-
niques for internal inspection of biological objects (see Table 1).
Derived from NMR are NMR spectroscopy, NMR relaxometry
and magnetic resonance imaging (MRI). For NMR spectroscopy
resonance frequency encodes the chemically equivalent nuclei
populations at different electronic and chemical environments so
that the outcome is an NMR spectrum where intensity is plotted
versus frequency. MRI devoted spatial codification of the signal
intensity produces a two- or three-dimensional image. NMR relax-
ometry identifies nuclei populations distinguishable due to the
different signal decay time constants, that is, relaxation times. NMR
technique offers information about the inside of an object, thus
making it feasible for quality classification of fruits and vegetables.
NMR is a useful non-destructive monitoring technique for a wide
range of applications because it is sensitive to the concentration,
chemical environment, mobility, and diffusion among other phe-
nomena, related to certain nuclei. These phenomena are influenced
by cell compartmentation and tissue microstructure so that the
NMR signal also acts as sensor of the tissue integrity. A number of
review articles and books on applications of NMR for quality eval-
uation of fruits and vegetables have been published recently (Hills
and Clark, 2003; Aristizábal, 2007; Hernández-Sánchez et al., 2009).
The first reported applications focused on quantification of main
components such as water and fat content by NMR spectroscopy.
Subsequent studies performed more complex analysis based on
NMR relaxometry. MR images allow internal tomography where
tissue contrast mainly arises from differences in relaxation times
and proton density, and are also used for characterization.

3.1. Stationary examination
Studies that have been conducted in fruits and vegetables with
NMR techniques mainly relate to the maturity and ripeness, inter-
nal damage and defect, and physiological disorders appearing
during storage and caused by pre- and postharvest conditions (Hills
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Table 1
Summary of quality attributes and disorders in fruits and vegetables studied by NMR relaxometry (MRR), NMR spectroscopy (MRS) and MRI techniques (including proton
density (PD) maps).

Product Maturity/sugar content Bruises/voids/seeds Tissue breakdown Heat injury Chill/freeze injury Infections

Fruit
Apple MRR/MRI MRI MRI/MRR PD maps
Avocado MRS/MRI
Banana MRR
Cherimoya MRR/MRI
Durian MRS/MRI MRI
Kiwifruit MRR MRI/MRR MRI
Mandarin MRR PD maps MRI
Mango MRS/MRR MRI MRI
Mangosteen MRI MRI
Melon MRS MRI MRI
Nectarine MRI MRR PD maps
Orange MRS/MRR MRI MRI
Papaya MRR
Peach MRI MRR/MRI
Pear MRI MRR/MRI
Persimmon MRI
Pineapple MRR/MRI
Tangerine MRI MRI MRI
Watermelon MRS MRI
Berries
Blueberry MRI MRI
Grape MRS/MRR
Strawberry MRI
Small, stone fruits (drupes)
Cherry MRR/MRS MRI
Olive MRI MRI
Plum/prunes MRS
Vegetables
Courgette/Zucchini MRI
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Cucumber
Onion MRI
Potato MRR/MRI MRI
Tomato MRR/MRI

nd Clark, 2003; Aristizábal, 2007). NMR spectroscopy and MRI
re used to monitor air spaces shrinkage and NMR relaxometry
re recently reported to detect decreasing relaxation times with
ipeness (Musse et al., 2009). T2 times and relaxation times were
sed to estimate tomato firmness with negative results (Tu et al.,
007), and the ripening of kiwi (Hills and Clark, 2003), banana (Raffo
t al., 2005) and cherimoya (Goni et al., 2007). In persimmon T1
eclined abruptly during ripening whereas T2 increased smoothly
Clark and MacFall, 2003). Further positive results are published
n apple and on pear related to sugar content and firmness, both
ased on analysis of T2-weigthed MR images (Hills and Clark, 2003;
ristizábal, 2007). Water suppression by diffusive attenuation was
sed in T1 measurements to successfully measure Brix in intact cel-

ular tissue of apple and strawberry (Marigheto et al., 2006), and oil
ontent in avocado (Marigheto et al., 2005), and many other prod-
cts (Aristizábal, 2007), which should be useful for rapid, online
easurements.
Among different types of internal defect, insect damage, fungal

nfection, bruise, and the presence of seeds or pits have been major
ssues. Larvae cavities were observed in MR images for pear, mango
nd peach (Aristizábal, 2007). Fungus infection has been inspected
sing MRI in nectarine, strawberry, grape, mandarin, orange and
oconut (Hills and Clark, 2003; Aristizábal, 2007). MRI has also pro-
ided contrasted images for the inspection of bruises in apples,
eaches, pears, onions, strawberry guava and potato (Aristizábal,
007). Multivariate image analysis of MR images of tomato proved
o be effective for predicting the conductivity score of pericarp tis-

ue in tomatoes for bruises detection (Milczarek et al., 2009). The
resence of seeds or pits was inspected with MRI in a number of
roducts such as plum, cucumber, peach and olive, cherry, man-
arin and orange (Kim et al., 2008; Hernández-Sánchez et al., 2009).
or cherries and olives one-dimensional MR images (projections)
MRI MRI

MRI MRI

sufficed (Hills and Clark, 2003) due to the large proportion of vol-
ume occupied by the pit within the fruit whereas for the other
products two-dimensional MR images were required for detec-
tion in order to avoid partial volume effect (Hernández-Sánchez,
2006).

Physiological disorders have also been of great interest. Among
those developed during the pre-harvest period works have mainly
focused on freezing damage and watercore. Aristizábal (2007) cited
an early work where dehydrated vesicles were detected in MR
images of oranges affected by freezing damage. Early works showed
the viability of detecting freezing injuries in products such as blue-
berries, kiwifruit, persimmons and peaches by means of contrast
changes in MR images, and in apple tissue through MR relaxom-
etry (reviewed by Hills and Clark, 2003). Damaged areas present
a reduction of the proton density and the relaxation constant T2
(Gambhir et al., 2005), which are the source of the contrast in
the MR images. The percentage of damaged tissue was addressed
in static and dynamic MR images obtained from oranges on the
tree that had been exposed at freezing temperatures (Hernandez-
Sanchez et al., 2004). Dehydrated tissue and cavities were also
observed by Aristizabal Torres (2006) in similar samples. Fast detec-
tion of seeds and freeze damage in mandarine citrus fruit was
performed using MRI in a 1 T industrial grade permanent magnet
(Kim et al., 2008). Detection of watercore in apples was feasible
because the reduction of the proton density and the relaxation
times in affected tissue involve intensity contrast in the MR images
(Hills and Clark, 2003; Marigheto et al., 2005). The postharvest

disorders appearing during storage that have been thoroughly
inspected with NMR techniques are internal browning and inter-
nal breakdown, mealiness and wolliness, core breakdown in apples,
peaches and pears (Lammertyn et al., 2003c; Hernandez-Sanchez
et al., 2007; Cho et al., 2008; Marigheto et al., 2008).
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Most of the aforementioned works have been undertaken with
ommercial NMR equipment designed for medical purposes. Such
quipment operate at high magnetic field strength of more than
T with high performance and expensive hardware requiring high

nitial capital investments. In addition, they are difficult to imple-
ent in an industrial environment. Hills and Clark (2003) and Hills

2006) suggested that the field homogeneity within large volumes
n low-field equipment and the compatibility with commercial fruit
raders should be major subjects for advancing the technology into
ndustrial applications.

.2. Moving measurements

Industrial implementation of NMR techniques for internal
nspection requires satisfactory performance under motion condi-
ions. This issue has been studied in recent works (Hills and Wright,
006).

For pit detection in cherries and olives, MR projections were
cquired with a 2 T NMR spectrometer (reviewed by Hills and Clark,
003) while samples were conveyed at belt speeds ranging from
up to 250 mm/s. Classification errors were greatly affected by

ample orientation. In detecting maturity in avocados (reviewed
y Hills and Clark, 2003) MR spectra were analyzed. The conveyor
peed varied from 0 to 250 mm/s and the fruit were placed at dif-
erent orientations with respect to the radio-frequency coil. The
esearchers found high correlation with dry weight (from 0.894
o 0.975) as the motion of the sample had small effect on the
cquired signal when single-shot sequences are used. A real-time,
n-line NMR quality evaluation sensor was designed, constructed
nd tested for several fruits to acquire NMR signals when a sample
s within ±50 mm of the NMR coil center at speeds ranging from 0
o 300 mm/s (Kim and McCarthy, 2006). Detection of freeze injury
n citrus under motion conditions (Hernandez-Sanchez et al., 2004)

as evaluated using an NMR spectrometer of 4.7 T. Fast Low Angle
hot (FLASH) images were obtained as oranges were conveyed at
0, and 100 mm/s belt speeds. Image blurring was induced by the
xcitation of consecutive slices driven by the axial location of the
eld of view (FOV). For seed identification in citrus (Hernandez-
anchez et al., 2006) the re-orientation of the FOV from axial to
oronal images solved the problem of signal superimposition, and
ecessitated the development of devoted algorithms to correct
hase shift induced by sample motion. The features extracted auto-
atically from the motion-corrected images were not significantly

ifferent from those extracted from the static ones. FLASH images
nd combined spiral radial (COMSPIRA) images were obtained
rom seedless and seed-containing mandarins while conveyed at
0 mm/s. Phase shift correction was applied for image reconstruc-
ion prior to image analysis. The seed identification was up to 100%
ccuracy using COMSPIRA images and image postprocessing based
n the variance of 2D histograms (Barreiro et al., 2008). Results have
et to be validated at low-magnetic field strengths and higher con-
eyor speeds. A 1 T industrial grade permanent magnet was used
o acquire MR images in mandarines and threshold-based image
nalysis has proven successful in detecting seeds and quantify-
ng freeze damage (Kim et al., 2008). For inspection of internal
reakdown in pears coronal FLASH images were acquired from
he equatorial slice of pears conveyed at about 50 mm/s through

4.7 T magnet (Hernandez-Sanchez et al., 2007). Correct classi-
cation was 98.4% although the final performance remains to be
alidated at low-magnetic field strengths and higher conveyor
peeds. Internal browning in apples was inspected with a low-

ost, low-field instrument of 0.13 T (Chayaprasert and Stroshine,
005) obtaining T2 global measurements at different belt speeds
p to 250 mm/s. Encouraging results were obtained at 50 mm/s
ith a classification error of 12% although performance decreased

t higher speeds.
nics in Agriculture 74 (2010) 176–194 181

To date, none of these technologies have been implemented in
the industry. Hernández-Sánchez et al. (2009) state that such tech-
nology transfer would require closer and more active interactions
between researchers and the food industry, in order to develop reli-
able and cost-effective NMR equipment with the capacity to meet
industrial application needs.

4. Computer vision for external quality and defects

Kader (2001) classified the quality attributes of fresh horti-
cultural produce in four groups: appearance, texture, flavor, and
nutritional factors. Appearance traits include size or dimension,
shape, surface texture, surface color, and external or surface defects.
Appearance factors define external quality and directly influence
consumers in purchasing a product, and they can be evaluated by
means of computer vision techniques. For some authors (Brosnan
and Sun, 2004) the terms computer vision and machine vision are
synonymous, whereas for others (Graves and Batchelor, 2003) com-
puter vision is a science. Computer vision systems measure the
reflectance of an object but also the distance (range) to the object.
While reflectance data are only necessary for color assessment and
external defects identification and quantification, size, shape and
surface texture can be evaluated either from reflectance or from
range data.

As in human vision, computer vision is highly dependent on by
the level and quality of illumination, regarding spectrum, stabil-
ity and spacial distribution. Two key parameters in any computer
vision system are spatial resolution and dynamic range. Resolution
is the ability to spatially resolve details in an image, while dynamic
range refers to the range of light levels that can be captured by
the imaging device. The image sensors used in computer vision are
based on solid state charge-coupled device (CCD) or complemen-
tary metal-oxide semiconductor (CMOS) technology. There are also
some applications using vidicon tubes and charge injection device
(CID). CID sensors are the preferred option when high reflections
are an issue, because CCDs are easy to saturate under these con-
ditions. An alternative way to overcome when specular reflection,
while sensing with a CCD, is to use polarizing filters. Both CCD and
CMOS sensors are available in area-scan, line-scan version. Most
cameras used in commercial fruit sorting systems are equipped
with area-scan sensors, also known as matrix or array sensors.

4.1. Size and shape

Although computer vision-based determination of axes or diam-
eters, projected area and circumference is considered a solved issue,
accurate fruit volume measurement at high speed has only become
available in the last few years (Moreda et al., 2009). Accurate
volume determination is of interest for online electronic density
sorting. Fruit density sorting is useful because there are products
like grapes or kiwifruit whose density is correlated to composi-
tions such as soluble solids (Sugiura et al., 2001; Jordan and Clark,
2004). Furthermore, density determination is of interest for sep-
arating freeze-damaged citrus fruits (Miller et al., 2006), puffy
tangerines (Aleixos, 1999), fruits with internal damage caused by
insects (Forbes and Tattersfield, 1999), watermelons with a high
degree of hollowness (Kato, 1997), and apples with watercore. The
typical accuracy of 1 mm offered by machine vision equipment
manufacturers suffices for the sizing of most fruits and vegeta-
bles based on fruit axes or diameters. However, commercial vision
systems that compute volume from 2D images generally do not

yield high precision volume measurements required for density
sorting. Nowadays, 3D machine vision systems are being intro-
duced in some food industries (Montrose Technologies; SICK-AG,
2010), and this trend could be further expanded into the fresh
produce industry, where 3D cameras could be used, besides for
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ccurate volume measurement, for shape sorting and surface area
uantification.

Fruit shape is one of the most important factors for classifying
nd grading fresh horticultural produce, but in many packing-
ouses fruit shape is still manually determined (Xiaobo et al., 2008).
ruit shape determination is of interest for several commercial
easons, including elimination of ill-shaped fruits and fruit dam-
ges which are located on non-flat fruit surfaces (Hryniewicz et al.,
005). Moreover, misshapen fruits such as pear-shaped grapefruit
re often considered defective (Syvertsen et al., 2005). For some
ommodities like banana, mango, broccoli or cauliflower, shape is
sed as a maturity index (Studman, 2001).

Automated shape determination techniques can be classified
nto two categories: 2D and 3D. Two-dimensional methods analyze
he shape of a planar digital image of the object taken by a video
amera, whereas 3D approaches try to reconstruct the object’s 3D
urface. Few works have dealt with online 3D shape inspection
or specialty crops, and most of the research reported so far has
elied on digital planar images. Noordam (2010) used six laser-
ameras to construct the 3D shape of sweet pepper fruits, based on
riangulation. Two-dimensional shape features can be measured
ndependently or by combination of size measurements (Du and
un, 2004). Circularity, aspect ratio and compactness are exam-
les of simple mathematical combinations of size measurements.
ore sophisticated shape analyses can be performed indepen-

ent of size measurements; these can be classified (Zhang and Lu,
004) into region-based (Heinemann et al., 1995) and contour-
ased (Abdullah et al., 2006; Menesatti et al., 2008; Jarimopas and
aisin, 2008; Riyadi et al., 2008; Costa et al., 2009). Table 2 summa-
izes classification accuracies reported by several researchers using
ifferent shape description techniques. Among size-independent
hape analysis techniques, contour-based techniques are generally
ore popular than region-based approaches. Region-based meth-

ds are more robust as they use all the shape information available.
t should be mentioned that although high classification accuracies
ave been reported (Table 1), most of the works were undertaken
ff-line and/or under laboratory conditions.

The potential of imaging sensors for quality classification of
otted plants under greenhouse production has been explored
ecently. Commercial protected glasshouse crop environments
llow many important environmental factors (e.g., lighting and
emperature) to be partly or totally controlled during growth
Parsons et al., 2009). It is, however, difficult to assess ornamental
uality because only subjective references can be used. Feed-
orward artificial neural networks were used to segment top and
ide view images of three contrasting species of bedding plants.
he segmented images provided objective measurements of leaf
nd flower cover, color, uniformity and leaf canopy height. The
xtracted image features would explain 88.5%, 81.7% and 70.4% of
he panel quality score. Prediction models based on artificial neu-
al networks cannot achieve high accuracy, and most of them have
oor capabilities for systematic improvement and low robustness.

.2. Surface texture

Surface texture refers to the topographic or relief features on
he outermost boundary of an agricultural product. Typical exam-
les include the wrinkles on prunes and raisins and the rough or
ebbly surface of an orange. Surface texture is a quality parameter

n many fruits. For example, high quality raisins are categorized by
ne wrinkles. Fekete and Olasz (2005) monitored the senescence

f apples kept in a cold room by analyzing fruit surface wrinkles.
n some commodities, maturity is partly defined by surface tex-
ure. Surface texture is difficult to measure, because it is a true 3D

easurement. Triangulation laser range finding, often abbreviated
s ‘laser scanning’ (although ‘laser scanning’ is misleading, since it Ta
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lso accounts for time-of-flight laser range finding), is a well-known
ethod used to measure surface features of manufactured goods,
hich could be used in fruit surface texture analysis. A more popu-

ar approach for produce surface texture inspection is the use of 2D
omputer vision. Dunn (2007) developed image analysis algorithms
o classify citrus fruits according to peel roughness by analyzing pla-
ar images. The experimental setup consisted of a source of light,
he fruit (orange) and a video camera, arranged horizontally at the
ertices of a right-angled triangle, so that the image acquired by the
amera was a sort of ‘half-moon’. With this setup, the ragged ‘termi-
ator’ line separating the lit and shadow zones of the orange surface
as frequency and amplitude analyzed. In this concept, if the object

s a billiard ball instead of a citrus fruit, the ‘terminator’ line would
e straight instead of ragged. A strong correlation between the com-
uter vision measurements and the subjective visual rankings was
eported, but the results were not quantified or validated.

Other potential techniques for surface texture analysis are stere-
vision, moiré interferometry, holographic interferometry, and
resnel diffraction. Holographic interferometry allows very high
patial discrimination in the order of 10−10 m, but the technique
urrently is too expensive to be practical for specialty crops.

.3. Surface color

Color is a human perception by definition, which has long been
sed in the assessment of fruit quality. In fruits, a decrease in chloro-
hyll content of the skin is correlated with increasing maturity; this

s traditionally used as the criterion for visual assessment of fruit
aturity (Crisosto et al., 2007). Some fruits have one color homo-

eneously distributed on the skin surface, and the averaged surface
olor is a good quality indicator for these fruits. In the early years
f application of computer vision to fruit inspection, fruit color
ssessment relied on grey-scale images captured by monochrome
ameras, for instance, for classification of bell pepper or oranges
n color classes. This approach is only applicable when the product
s mono-colored, and defect detection is not required. Other fruits,
ike some cultivars of peaches and apples, have a secondary color
hat is frequently used as an indicator of maturity, which often is
ot reliable.

Produce color sorting in modern packinghouses is performed
sing RGB color video-cameras. Each pixel in a color image con-
ists of three intensity values, since any color can be reproduced by
he combination of three primary color components: blue, green,
nd red. Each of these components: R, G and B, covers a large part of
he visible spectrum, as compared to multispectral cameras that use
arrow bands. The techniques require previous and also continuous
raining to adapt the system to the great color variability present in
roducts like fruits (Blasco et al., 2007; Lleo et al., 2009). In general,
nline fruit color grading by means of computer vision is consid-
red solved and is widely used now by the industry. However, color
orting is not suitable for measuring or assessing internal quality,
hich may require multi- and hyperspectral imaging as discussed

bove.
Image color accuracy and spatial resolution have been greatly

mproved in three-chip (CCD, CMOS) cameras (Pitre et al., 2010).
hree-chip color cameras use dichroic prisms to direct the light
n each of the three wavebands. Single-chip color cameras, with
ubstantially increased resolution without diminishing sensor
ensitivity and dynamic range, were recently developed (Digital-
hotography-Review, 2008).
.4. External or surface defects

Blemish sorting has been addressed together with color sort-
ng for many years mainly because many defects exhibit special
olor characteristics. For instance, apple skin affected with rus-
nics in Agriculture 74 (2010) 176–194 183

seting is brown, and severe fungal attacks in orange are shown
as a greenish or whitish peel. In fact, human inspectors in pack-
inghouses depend heavily on color to differentiate defects. Xing
et al. (2007) stated that although computer vision systems have
received much attention for sorting apples, oranges, peaches and
other fruits into different categories according to size and color,
they still have some limitations in surface defect detection. Blem-
ishes are difficult to detect when their color coincides with the color
of the sound peel. Recent techniques use multispectral (Aleixos et
al., 2002), or hyperspectral imaging (Tallada et al., 2006; Kim et
al., 2007) to detect blemishes. Guyer and Yang (2000) used arti-
ficial neural networks and spectral imaging for identification and
quantification of different types of cherry surface defects, like dry
crack, wet crack, mold, and bruise. An average of 73% classifica-
tion accuracy was achieved for correct identification as well as for
quantification of different types of cherry defects. No false positives
or false negatives occurred; errors resulted only from misclassifi-
cation of different types of blemishes or the quantification of the
size or number of defect. Tallada et al. (2006) took spectral images
from strawberries in the range from 650 to 1000 nm at 5 nm inter-
vals to determine two optimal wavebands for the detection of
bruises. Optimal wavebands of 825 nm and 980 nm were obtained
using stepwise linear discriminant analysis. The non-bruised sam-
ples were perfectly classified as non-bruised, i.e., there was no
false-positive classification. Bruised samples with larger damage
(applied in the laboratory) were perfectly classified, while varia-
tions in the accuracies for small bruises were observed, and they
depended on degree of ripeness. Kim et al. (2007), using a NIR two-
band reflectance ratio coupled with a simple classification method
based on the mean intensity and homogeneity of the ratio, achieved
a 99.5% apple defect classification.

The detection of skin defects is closely related to the ability
to correctly identify the stem cavity or the calyx. The ‘stem/calyx
issue’ has been tackled through different approaches: mechanical
orientation, 2D image processing, 3D shape capturing, and logi-
cal comparison of images corresponding to different wavelengths,
and is already present in commercial fruit handling equipment.
Throop et al. (2005) described a handling system that oriented sev-
eral apple cultivars with a success rate higher than 97.6%. When the
3D shape of the fruit is reconstructed, the problem of mistaking the
stem cavity for a blemish disappears. Yang (1996) recovered the
3D shape of apples by projecting structured light on the fruit sur-
face, the shape-from-shading technique to construct the 3D surface
of apples from 2D NIR images; they report a 90.1% defect detec-
tion at a throughput of 1 fruit per second. Wen and Tao (2000)
used a dual-camera system comprised of a visible-NIR camera and
a mid-infrared (MIR) camera. The NIR camera detected both defects
and concavities, whereas the MIR camera detected only concavities.
Defect detection was achieved by logical comparison of the images
delivered by the two cameras. Finally, the above-mentioned NIR
processing regime of the work by Kim et al. (2007) overcame the
presence of stem/calyx on apples. More recently, 3D reconstruc-
tion using a shape-from-shading approach was combined with a
quadratic facet model to reconstruct the 3D concave shape (Jiang
et al., 2009).

5. NIR and IR spectroscopy

Different NIR and IR spectroscopic techniques currently are
being used for specialty crops. Table 3 summarizes some relevant
applications published in the past two decades.
5.1. NIR spectroscopy

According to the IUPAC definition (Sheppard et al., 1985),
NIR radiation covers the range of the electromagnetic spectrum



184 M. Ruiz-Altisent et al. / Computers and Electronics in Agriculture 74 (2010) 176–194

Table 3
Relevant applications of NIR- MIR spectroscopy in specialty crops.

Category Subject Reference

NIR

Dry matter content of onions Birth et al. (1985)
Soluble solids content of apples Bellon-Maurel (1992)
Water content of mushrooms Roy et al. (1993)
Acidity, soluble solids, and firmness of apples Lammertyn et al. (1998)
Detection of brown heart in apples Clark et al. (2003)
Prediction of the sensory quality attributes of apples Mehinagic et al. (2004)
Prediction sensory attributes of chicory François et al. (2008)
SRS for measuring the sugar content and firmness of apples Peng and Lu (2007)
Estimation of water and chlorophyll content Cubeddu et al. (2001)
TRS for modeling nectarine softening Zerbini et al. (2006)
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ATR-FTIR for detecting sugars and acids in to
ATR-FTIR for detecting sugars and acids in ap
Detection of changes in macromolecular con
Quantification of olive oil acidity

etween 780 and 2500 nm. In NIR spectroscopy, the product is
rradiated with NIR radiation, and the spectrum of the reflected
r transmitted radiation is measured. The spectral characteristics
f the incident ray are modified while it passes through the product
ue to wavelength dependent absorption and scattering processes.
his change depends on both the chemical composition and the
hysical properties of the product (Nicolai et al., 2007). Advanced
ultivariate statistical techniques such as partial least squares

egression (PLS) are then applied to correlate the NIR spectrum to
uality attributes such as the sugar content or firmness of the prod-
ct. This relation can be used to calculate the quality attributes of
uture samples from their NIR spectrum.

NIR spectroscopy has been used for rapid analysis of mainly
he moisture, protein and fat content of a wide variety of agricul-
ural and food products (Gunasekaran and Irudayaraj, 2001; Butz
t al., 2005). While early applications in horticulture focused on
he dry matter content of onions (Birth et al., 1985), the soluble
olids content (SSC) of apples (Bellon-Maurel, 1992) and the water
ontent of mushrooms (Roy et al., 1993), many other applications
ave followed. As the propagation of NIR radiation in fruit and veg-
table tissue is affected by its physical properties and notably its
icrostructure, NIR spectroscopy has also been used to measure
icrostructure related attributes such as stiffness (Lammertyn et

l., 1998), internal damage (Clark et al., 2003), and even sensory
ttributes (Mehinagic et al., 2004; François et al., 2008). A compre-
ensive overview of applications of NIR spectroscopy to measure
uality attributes of fruit and vegetables was recently published
Nicolai et al., 2007). It includes a comprehensive table with the

ost relevant and recent applications, up to 2007. A very large
umber of papers have been published in recent years concerning
IR spectroscopy in foods, and specialty crops are one of the bene-
ciaries, and the most recent papers usually contain good reviews
n the matter (Liu et al., 2010).

The information related to the physical (scattering) and chem-
cal (absorption) properties of the biological tissue is combined

ithin the NIR spectrum. Both space-resolved and time-resolved
echniques have been used to separate the scattering and absorp-
ion information. In space-resolved spectroscopy (SRS), a camera
s used to acquire a hyperspectral image of a spot of light which is
rojected on the surface of the fruit. The size of the reflected spot

s larger than the projection area because of scattering, and may
epend on the wavelength. The hyperspectral image can then be
orrelated to the quality attributes of the product. This technique
as been used with good result for measuring the sugar content

nd firmness of apple fruit (Peng and Lu, 2007). In time domain
eflectance spectroscopy (TRS), series of very short (picosecond or
emtosecond) NIR light pulses are illuminated into the fruit using a
unable laser or a solid state laser array (Cubeddu et al., 2001). The
etector is positioned at some distance from the light entry point
es Beullens et al. (2006)
Rudnitskaya et al. (2006)

nts of hazelnut Dogan et al. (2007)
Inon et al. (2003)

of the incident photons. Depending on the scattering properties of
the tissue, the photons may follow a complicated path in the tis-
sue and it may take more or less time to reach the detector. As a
result, the detector will measure a photon time-of-flight distribu-
tion from which, based on light diffusion theory, the absorption and
scattering coefficient as a function of wavelength can be measured.
These coefficient spectra can then be correlated with internal qual-
ity attributes. So far the obtained correlations between absorption
and scattering spectra and quality attributes such as SSC or firmness
were low (Valero et al., 2004; Zerbini et al., 2006) to non-existent
(Nicolai et al., 2007), most probably due to instrument drift or the
limited wavelength range (≤1030 nm) considered in the experi-
ments. In the same context as TRS and SRS there is recently an
increasing interest towards calibration techniques which rely on
the actual physics of penetration of NIR radiation in fruit tissue
rather than on a pure statistical analysis such as PLS on empir-
ically preprocessed spectra. Advanced light transport simulation
models based on the diffusion approximation, the adding–doubling
method or the Monte Carlo method might guide these research
efforts, and make it possible to separate the information related to
the physical (scattering) and chemical (absorption) properties of
the biological tissue (Saeys et al., 2008).

Most applications of NIR spectroscopy which are described in
the literature essentially rely on spot measurements. The avail-
ability of affordable hyperspectral cameras and spectrographs has
provided exciting new possibilities for online defect detection
which are not feasible with visible light, such as detection of defects
which are difficult to observe in the visual range of the spectrum
such as early bruises in apple fruit (Xing and De Baerdemaeker,
2005). While acquisition speed is still an issue, focal plane array
cameras may solve this problem. NIR microscopes implementing
this technology have appeared recently, and it is expected that they
will provide a better understanding of the microscopic distribution
of, e.g., sugars or other interesting biochemical components at the
histological or cellular level.

The availability of fast and relatively cheap diode array spec-
trometers which allow to acquire an NIR spectrum in as little as
50 ms has boosted research and development towards commer-
cial applications, and grading lines equipped with NIR sensors are
now commercially available from different manufacturers. More
widespread use of this technology depends on several factors,
of which model robustness is the most important technical one.
Obviously, the accuracy of the NIR calibration models should be
sufficient even when they are used to predict quality attributes of

product specimen which were not used in the model calibration.
Calibration models to be used in practice should be based on large
datasets, encompassing several origins, climate conditions, seasons
and operational conditions such as temperature, and optimised
towards robustness by incorporating appropriate spectral prepro-
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essing methods. Protocols are needed to update calibration models
ith minimal effort. Other issues which have to be considered are

emperature sensitivity of NIR measurements (Roger et al., 2003)
nd transfer of a calibration model to a different spectrophotometer
Greensill et al., 2001).

.2. Mid-IR spectroscopy

Mid-infrared spectroscopy addresses the interaction of mat-
er and electromagnetic radiation with a wavelength between 2.5
nd 25 �m. Absorption of Mid-IR light results from transitions
etween vibrational and rotational energy states of molecules. Mid-

R spectra are commonly acquired by means of Fourier Transform IR
pectrometers (FTIR). The main advantage of Mid-IR in comparison
o NIR spectroscopy is the fact that the Mid-IR spectrum is much
ess convoluted than the NIR spectrum; the peaks are much sharper
nd can often be directly associated with specific chemical con-
tituents. However, an inherent problem in Mid-IR spectroscopy is
he limited penetration depth. While for NIR radiation the penetra-
ion depth in biological tissue is of the orders of cm in the so-called
ptical window between 700 and 900 nm, it rapidly decreases to
mm or less at 1600 nm, and in the Mid-IR range it is only frac-

ions of a millimeter (Lammertyn et al., 2000). FTIR spectroscopy is
herefore mainly used to characterize homogeneous samples such
s juices, often in combination with an attenuated total reflection
ATR) sample presentation accessory. ATR-FTIR has been used to
etect sugars and acids in tomatoes (Beullens et al., 2006) and
pples (Rudnitskaya et al., 2006), to detect changes in macromolec-
lar constituents of hazelnut (Dogan et al., 2007), and to quantify
live oil acidity (Inon et al., 2003). Mid-IR spectroscopy seems to
e more appropriate for qualitative (classification) purposes or to
etect adulteration rather than for the quantitative measurement
f quality attributes of agricultural products.

.3. Fluorescence and delayed-light emission (DLE)

Fluorescence and phosphorescence are summarized by the term
photoluminescence”. To activate a luminescence response in a
ody, excitation is accomplished by short-wavelength light, tra-
itionally in the UV, but also in the VIS range. Most applications
f fluorescence in plants that have been published are related to
he determination of chlorophyll activity. DLE is fluorescence that
evelops shortly after excitation, due to intermediate reactions in
hotosynthesis (Butz et al., 2005).

Applications of fluorescence reported in the literature have been
elated to chlorophyll, as an indirect marker for fruits’ physiologi-
al status: chlorophyll degrades in fruits, and also in vegetables, as
consequence of ripening, senescence, time and treatments. Butz

t al. (2005) include references regarding applications in: fresh-
ess of broccoli, postharvest defects in apples, cold damage in
ranges, and senescence in cucumber. Some chemicals in plants,
ifferent from chlorophyll, fluoresce, like phenolics. As fluores-
ence response is dependent on the excitation wavelengths and
he response is also wavelength dependent, the technique shows a
otential high specificity of the response of different compounds.
yperspectral devices have been used to characterize fluorescence

esponses, e.g., for the characterization and differentiation of edi-
le oils of plant origin using lasers as excitation source (Kim et
l., 2001; Sikorska et al., 2005). Slaughter et al. (2008) used visual
nd machine-vision methods for early detection of frost damage

n oranges. Fluorescence is a promising technique, widely used
n chemistry, which could be the basis for new specialized sen-
ors. However, substantial research is needed in the basic science
f fluorescence to advance possible applications, as well as in the
nstrumentation and its applicability in practice.
nics in Agriculture 74 (2010) 176–194 185

Some publications show the applications of fluorescence imag-
ing for detection of quality of fruits (Liu et al., 2008; Valcke, 2008)
even integrating it with conventional reflectance (Noh et al., 2007).
They use a laser as fluorescence-inducer, and hyperspectral imag-
ing for capturing. More in-depth knowledge on the fluorescing
agents of intact fruits is needed, and their relationship with fruit
quality before feasible applications may be developed.

6. Mechanical methods for firmness measurement

Mechanical techniques have been developed to non-
destructively measure some quality parameters of fruit and
vegetables, mainly for firmness estimation, providing an
alternative to the destructive Magness–Taylor penetrometry
(García-Ramos et al., 2005; Nicolaï et al., 2006). Major mechanical
techniques include the measurement of variables extracted from
quasi-static force-deformation curves, the analysis of impact
forces, and the measurement of acoustic responses to vibrations
and impacts.

6.1. Measuring the variables of force-deformation curves

By applying a small deformation force to the fruit with a
metallic plunger in such a way that it causes no damage, the
non-destructive force-deformation curve can be recorded using an
analogue (spring) or a piezoelectric sensor positioned at the back
of the compression plunger. The curve is produced by applying a
small load for a fixed period of time (Macnish et al., 1997) or by cal-
culating the force necessary to reach a pre-set deformation (Fekete
and Felföldi, 2000). This non-destructive technique (also known
as micro-deformation) has led to the development of a number of
force-deformation devices.

Micro-deformation sensor developed by Cemagref (French
agricultural and environmental engineering research institute)
(Steinmetz et al., 1996) consists of a flexible positioning cup with
a contact plunger in the centre to slightly deform the fruit sur-
face (maximum 2 mm approx.). A micro-deformation device was
developed by Copa Technology in collaboration with CTIFL (Centre
Techniques Interprofessionnel des Fruits et Légumes). Their “Duro-
fel” instrument has a metallic, flat-ended probe with three possible
contact areas (10, 25, 50 cm2), and is based on the Shore A durom-
eter. The device has been widely used for apricots (Jay et al., 2000),
tomatoes (Planton, 1991), cherries (Clayton et al., 1998) and other
soft fruits.

Macnish et al. (1997) describe two non-destructive devices
for measuring firmness developed by CSIRO (Australia’s Com-
monwealth Scientific and Industrial Research Organization): the
Analogue Firmness Meter (AFM) and the Digital Firmness Meter
(DFM). These devices have been used with tomatoes and mangos.
The fruit is placed in a v-shaped structure, and then a 40 mm diam-
eter disc is applied to it. The disc is joined by an arm to an analogue
displacement gauge (Macnish et al., 1997).

A non-spectroscopic method of measuring mechanical deforma-
tion with a laser has been developed (Hung et al., 1999). Known as
the “laser air-puff”, this device measures the deformation of fruits
subjected to a short but strong current of air (69 kPa in 100 ms).
McGlone et al. (1999) used a similar system to test kiwifruit, but
only very soft fruit could be accurately distinguished (McGlone et
al., 1999). More recently, Lu and Tipper (2009) develop a portable
bioyield detection device to measure apple fruit firmness, which
measure force at the bioyield point as an indication of fruit firmness.
6.2. Sensors based on force-versus-time measurements (impacts)

There are many ways of using impact sensors, such as: (a) hitting
the fruit with some element that includes the sensor; (b) putting
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he fruit over a load cell and letting a weight fall on it; (c) placing
he fruit on a flat plate with a load cell located beneath it.

Chen and Ruiz-Altisent (1996) developed a “lateral impact sen-
or” consisting of a small arm with lateral movement that impacts
he fruit with a semi-spherical head. A piezoelectric accelerometer
ocated on this head estimates fruit firmness. Lateral impact sensor

as adapted for use with a conveyor belt (Chen and Ruiz-Altisent,
996; García-Ramos et al., 2003). Peach and apple firmness could
e measured at a maximum speed of 6 fruits per second. A step for-
ard in this technique was the development of a manual impact

ensor shaped like a gun. This sensor can be used in orchards to
etermine the optimum harvest date (Chen et al., 2000). Delwiche
t al. (1996) developed a sensor, based on the impact technique,
hat acts horizontally and consists of a cylindrical head with an
ttached accelerometer, all moved by a pneumatic cylinder. The
ensor was installed successfully in an experimental packing line
Delwiche et al., 1996).

Impact techniques can also involve dropping the test fruit onto
load cell. Moltó et al. (1996) and Gutiérrez et al. (1999) described
sensor based on this idea, the load cell recording the impact
hen the fruit falls on it. The sensor, patented in Spain by IVIA (the
alencian Institute for Agricultural Research) and FOMESA (Food
achinery Española, S.A.), has been used to detect puffed clemen-

ines online at a speed of 5 fruits per second and with an accuracy
f over 90% (Moltó et al., 1996).

All the equipments described above have been developed by
esearch groups and is currently being used in the form of pro-
otypes. However, some companies are marketing various forms
f impact apparatus for online use (the sensors used are usually
iezoelectric, providing a voltage signal proportional to the impact
orce in a manner similar to an accelerometer). For example: the
mpact/acoustic firmness sensor (AFS) by Aweta, Greefa (iFD, intel-
igent firmness detector), Sinclair iQ firmness tester. These sensors
ave been tested with apples, avocados, citrus fruits, kiwis, plums,
ectarines, peaches and many other fruits (Howarth and Ioannides,
002). These sensors are capable of measuring 6–10 fruits per sec-
nd. Bench-top versions of these equipments are commercially
vailable, and handheld versions are being developed for field or
n-tree measurements (Slaughter et al., 2009).

. Acoustic response for firmness and structural defects

Non-destructive techniques of using acoustic and vibrational
haracteristics for determining internal properties of fruits and veg-
tables, mainly flesh texture, have been the subject of numerous
nvestigations over the past several decades. In order to obtain
n objective and non-destructive measurement of firmness, sev-
ral techniques (Chen and Sun, 1991; Abbott, 1999) and theoretical
odels (Huarng et al., 1993) about the dynamic behavior of these

iological materials were developed many years ago. These mod-
ls mainly assume that the object is spherical and approximately
lastic. Cooke and Rand (1973) proposed a mathematical model for
he modulus of elasticity:

= C · f 2 · m2/3 · �1/3,

here E is the coefficient of elasticity (Pa), C is a constant, f is
he frequency for the highest amplitude (Hz), m is the mass and

is the density (kg m−3). Since the 1990s several research groups
Chen et al., 1996; Abbott et al., 1997) and others have done exten-
ive research on simulating sonic vibrational behavior for different

hapes of fruits.

In these techniques, the product is excited by means of a small
mpact, and the vibration (about 20–20,000 Hz) is measured using a

icrophone, piezoelectric sensors or laser vibrometers. The acous-
ic signal captured is Fourier transformed and the main frequencies
nics in Agriculture 74 (2010) 176–194

calculated. Resonant frequencies observed in the fruit relate to elas-
ticity, density, size and shape of the object. Resonant frequencies of
some fruits and vegetables (apples, melons, peaches, tomatoes, etc.)
have been associated with firmness using coefficients described as
“stiffness coefficient” or “firmness coefficient”. The stiffness coeffi-
cient was formerly defined as f2m, where f is a selected resonant
frequency, and m is the mass of the fruit. This was later corrected
and replaced by the expression f2m2/3, but in recent works f2m has
been applied (Fekete and Felföldi, 2000). Depending on the pub-
lished applications, f can be the first, second, third, or the highest
resonant frequency, or any other combination. In the determi-
nation of peach firmness, the second resonant frequency is used
(Clark and Shackelford, 1973); for testing the texture of apples,
the second or third resonant frequencies can be used (Abbott and
Liljedahl, 1994), for pineapples the first resonant frequency is used
by some authors (Chen and De Baerdemaeker, 1993) and the third
one is proposed (Pathaveerat et al., 2008), while for pear the sec-
ond frequency is considered (Taniwaki et al., 2009b). A handheld
prototype was developed to measure firmness while the fruits
were still on the tree using the stiffness factor f2m2/3 (Zude et al.,
2006).

These coefficients and their theoretical basis are appropriate
for regular shapes (sphere, axisymmetric spheroid), but they are
also applied to more irregular fruit shapes. If the fruit or vegetable
shape is far from spherical, adapted firmness indices including a
measure of shape is proposed by some authors (Jancsók et al.,
2001).

Correlations between the textural characteristics of fruits and
vegetables and other vibration or sonic variables, e.g., pulse propa-
gation velocity, damping coefficient and band magnitude, have also
been studied earlier (Garret and Furry, 1972; Sugiyama et al., 1998)
and recently (Taniwaki et al., 2009a).

Non-destructive techniques using sonic characteristics of fruits
and vegetable have been applied also for detecting internal dis-
orders and classification: internal creases or voids in seedless
watermelons by impacting the fruit (Diezma-Iglesias et al., 2004)
dropping potato tuber onto an instrumented surface (Elbatawi,
2008), or sorting pistachio nuts with closed shells from those with
open shells (Pearson, 2001).

Several commercial sonic devices have been also developed: the
AFS by Aweta, mentioned before, is a good example that combines
acoustic and impact responses: the excitation impact is gener-
ated mechanically on the bottom of the fruit and a microphone
records the vibration. Both responses, impact and acoustic, are
used in dedicated algorithms which are able to measure firmness
of apples in a large range accurately (Herrero-Langreo, 2010). The
combination of two and more types of different sensors, mainly for
fruit ripeness assessment has been stressed for long time. Ruiz-
Altisent et al. (2006) showed that in peaches, up to 91% of the
total variability in ripeness was obtained by combining optical (VIS)
and mechanical measurements (optical reflectance). This opens a
new way for increasing the accuracy and robustness of sensors in
practice.

8. Chemical sensors

There is a need for quick testing for both individual chem-
ical compounds and composite mixtures of different nature
(Snopok and Kruglenko, 2002); also a non-destructive, non-
available on the product with the stage of freshness and quality.
Low-cost and continuous monitoring of chemical and microbiolog-
ical quality (including microbiological examination of food: aerobic
colony count, presence and/or number of pathogens), with fast
response times, can be achieved with chemical sensors.
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.1. High selectivity versus low selectivity sensors

According to the International Union of Pure and Applied Chem-
stry (IUPAC) nomenclature, “a chemical sensor is a device that
ransforms chemical information, ranging from the concentration
f a specific sample component to total composition analysis, into
n analytical useful signal. Chemical sensors usually contain two
asic components connected in series: a chemical (molecular)
ecognition system (receptor) and a physico-chemical transducer”
Snopok and Kruglenko, 2002).

Chemical sensors may be classified according to the chemi-
al specificity-conferring mechanism; biosensors are a subgroup
f chemical sensors which incorporate a biological or biomimetic
ensing element. The main biological materials used in biosen-
or technology are the couples enzyme/substrate, antibody/antigen
nd nucleic acids/complementary sequences. The selectivity of the
iological sensing element offers the opportunity for development
f highly specific devices for real-time analysis in complex mixtures
Velasco-Garcia and Mottram, 2003). The most important area of
nterest for the biosensor application is the detection of pathogens,
esticides, microorganisms and toxins (Mello and Kubota, 2002).

Typically, a “lock-and-key” approach is not suitable for simula-
ion of human preferences to the composition of complex mixtures
s foods or beverages. Snopok and Kruglenko (2002) described a
ulti-component chemical media (MCM) not by a sum of their

ndividual components (or corresponding responses from the spe-
ific sensors) but by some abstract representation, a chemical
mage (CI) as a fingerprint where a set of parameters character-
ze a given MCM. An “electronic nose”, which mimics the human
lfaction, is an example of “electronic sensing” based on arrays of
ow-selective/cross-reactive sensors, which combined responses
nd coupled with an appropriate pattern recognition system, allow
haracterizing a gaseous sample as a global fingerprint or chemical
mage.

. Biosensors

The biological recognition element of a biosensor can be classi-
ed into two main classes: biocatalysts (enzymes, microorganisms,
issue materials) and bioligands (antibodies, nucleic acids, lectins).
he traditional transducers are electrochemical, optical and ther-
al. The latest generation of biosensors (affinity biosensors)

ombine the classical measurement principles with piezoelectric
nd magnetic transducers (Castillo et al., 2004).

More than 10 years ago Lowe (1999) already expressed that

there is a general consensus that a number of new opportunities
or biosensors are appearing in agri-food production and process

onitoring”. In the specific case of postharvest management of spe-
ialty crops, the most important concerns are the following issues
summarized in Table 4).

able 4
ain objectives and technologies involved in biosensing.

Objectives Technologies

Detection of pesticide residues Enzyme bioreceptors
pH-sensitive transducers
Pesticide residue detection visua

Quality control in storage atmospheres Co-immobilization of the enzyme
horseradish peroxidase

Foodborne pathogen and toxins
detection in fruits and vegetables

Optical-based biosensors
Light scattering biosensors for th
viz. L. monocytogenes, E. coli O157
Fluorescent sensor to detect fum
Antennae of Colorado potato bee
infestans
nics in Agriculture 74 (2010) 176–194 187

(1) Detection of pesticide residues. Enzyme bioreceptors are widely
employed for this application. Amine et al. (2006) estimate that
about 71% of the applications described for these enzymatic
biosensors are for the determination of pesticides including
carbamates and organophosphorus compounds, while heavy
metals detection represent only 21%. These biosensors are
based mainly on the inhibition of Acetylcholinesterase (AchE),
but using different signal transduction methods. Velasco-Garcia
and Mottram (2003) presented in their review some practi-
cal applications: pH-sensitive transducers were successfully
applied to the quantification of the pesticide propoxur in onion
and lettuce samples, for the determination of heavy metal
ions and phosphororganic pesticides in contaminated potatoes
and a biosensor based on AchE immobilized onto magnetic
particles in a photometric flow injection system could detect
methamidophos (organophosphate insecticide) in lettuce and
cabbage. More recently Nagatani et al. (2007) have developed
pesticide residue detection visual chips based on AchE, which
could differentiate between concentrations of 0.1 and 0.2 ppm
of diazinon–oxon in real samples of apple and orange juice.

(2) Quality control in storage atmospheres. Determination of ethanol
is important in agricultural and environmental analysis as for
example in modified-atmosphere packages and controlled-
atmosphere storage as a technique for low oxygen injury
detection during the handling of fruits and vegetable (Velasco-
Garcia and Mottram, 2003). The most promising ethanol
sensors developed up to date are the bienzymatic sensors based
on the co-immobilization of the enzymes alcohol oxidase with
horseradish peroxidase, bienzymatic system that has been used
to develop commercial colorimetric sensors which are able to
detect low-O2 injury in modified-atmosphere packages con-
taining fresh cut fruits and vegetables (Azevedo et al., 2005).

(3) Foodborne pathogen and toxins detection in fruits and vegeta-
bles. According to Lazcka et al. (2007) biosensors are at the
present the fastest growing technology for pathogen detection,
being possible in a near future that this analytical technique
can replace the reference test ELISA. This is a great interest area
not only due to their potential toxicity detection, but also due
to being indicators for freshness or spoilage of fruits and veg-
etable (Saaid et al., 2009; Velusamy et al., 2010). Nayak et al.
(2009) in their review, present an application of light scattering
biosensors for the detection of target bacteria viz. L. monocy-
togenes, E. coli O157:H7 and Salmonella in vegetable and meat
samples spiked with these bacteria. The forward scattering was
able to detect the presence of contaminants accurately based
on the distinct colony/scatter signature. The detection limit of
this system was single cell per 25 g portion of test specimen.

On the other hand moulds of the genera Aspergillus and Peni-
cillium occur in different fruits, producing several mycotoxins
than have been described as toxinogenic. Leung et al. (2007)
in their review about fiber-optic biosensor described a fluo-

References

Amine et al. (2006)
Velasco-Garcia and Mottram (2003)

l chips based on AchE 2007

s alcohol oxidase with Azevedo et al. (2005)

Velusamy et al. (2010)
e detection of target bacteria
:H7 and Salmonella

Nayak et al. (2009)

onisins and aflatoxins Leung et al. (2007)
tle for detecting Phytophtora Velasco-Garcia and Mottram (2003)
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rescent sensor to detect fumonisins and aflatoxins in maize,
using a competitive assay, on the one hand, to measure fumon-
isin B-1 (FB1); the antibody to FB1 was covalently bonded to
the fiber, the fluorescence signal was inversely proportional
to the concentration of FB1. On the other hand the mycotoxin
aflatoxin B-1 (AFB(1)) was detected using a non-competitive
assay because the AFB(1) fluoresces. The fluorescent signal
in this case was directly proportional to the concentration of
AFB(1). The detection limit was 2 ng/mL of AFB(1). A biosensor
based on the intact antennae of Colorado potato beetle (Leptino-
tarsa decemlineata) was developed to detect marker volatiles
released by potato tubers infested with Phytophtora infestans
fungus (aflatoxins producer). The biosensor was able to detect
one single diseased potato tuber within up to 100 kg potato
tubers (Velasco-Garcia and Mottram, 2003).

In spite of the applications described in previous paragraphs,
here are relatively few publications on biosensors applied in
ostharvest technology. The extended review by Rich and Myszka
2007) on commercial optical biosensors, shows 14 papers under
Food, agricultural, veterinary and environmental sciences”. Among
hem there are no applications reported on fruit and vegetable
ostharvest control quality.

An important remark is that the majority of the biosensors cited
re to be used in a liquid phase (sometimes used to build the equip-
ent called “electronic tongues”), showing that the non-destructive

pproach is still far in the case of solid samples. In general among
ther drawbacks that biosensors have to overcome are the limited
ifetime of the biological components, the lack of selectivity in real
omplex matrices, the improvement of the sensor devices (in sen-
itivity and in reproducibility) and the cost for mass commercial
roduction.

.1. Electronic nose

The concept of the electronic nose (EN) was already formulated
y Gardner and Bartlett in 1993 as an instrument capable of recog-
izing simple or complex odors. It is possible to build a fingerprint
hat represents the global effect of the aroma food sample, with the
ensor array response for the interaction of the aroma components
ith the receptor sites in function of the chemical specificity-

onferring mechanism and the mode of physico-chemical signal
ransduction (semiconductor, transistor and piezoelectric trans-
ucers are the most used) (Snopok and Kruglenko, 2002).

From the postharvest management point of view, in fruit
ipeness the most important changes in fruit aroma are experi-
nced during the shelf-life period (Brezmes et al., 2001b), but a
umber of other factors influence volatile emission after fruit stor-
ge, mainly storage treatment including period as well as O2 and
O2 concentrations in the storage atmosphere. Fruit aroma, or any
ther volatiles related to the process, are potential indicators of the
hysiological condition of the fruit, which can be used to develop
onsistent and reproducible non-destructive techniques to evalu-
te fruit quality from harvest to consumer (Pathange et al., 2006).

The technique of global aroma analysis by means of EN has
een considered very promising during the last 15 years as a
on-destructive tool to evaluate fruit quality, as shown in the
omprehensive review of Peris and Escuder-Gilabert (2009), from
ifferent points of view: shelf-life investigation to assess “Jonagold”
Saevels et al., 2003) and “Pinklady” (Brezmes et al., 2001a) apples
uality during shelf-life, to monitor tomato fruit with different

torage time (Gómez et al., 2008); harvest date determinations in
andarins (Gomez et al., 2006), apples (Saevels et al., 2003) and
ango fruit (Lebrun et al., 2008), to classify “Gala” apples at har-

est in different maturity degrees (Pathange et al., 2006), faults
etection as to detect freeze damage in oranges (Tan et al., 2005)
nics in Agriculture 74 (2010) 176–194

or apples defects as mealiness and skin damage in “Cox” (di Natale
et al., 2001) and “Red Delicious” apples (Li et al., 2007), and for
blueberry fruit disease detection and classification (Li et al., 2010).

Nevertheless at the current stage the expectations have not
been achieved in a majority of applications. Both the headspace
generation from the sample and the response of sensors, depend
on numerous factors that are very difficult to control. The effi-
ciency at generating the headspace is generally low due to external
parameters such as temperature or relative humidity and the
gas/volatile composition of the environment. In addition impor-
tant internal parameters, as the nature of the substrate, affect
the headspace generation. Concerning the sensors characteristics,
common restrictions can be summarized as: lack of sensitivity, lack
of linearity, lack of specificity and short- and long-term time drifts.
Thus, further research is being carried out to overcome these con-
straints: basic knowledge of gas/volatiles mixtures and interactions
and improvements in the gas transfer components.

In spite of the optimism for the potential of biosensors with a
great number of publications on biosensors applied in food analysis,
their emergence from the research laboratory to the market has
been slow and only a few systems are commercially available.

On the other hand commercial ENs are available in several
shapes such as portable (handheld) devices (e.g., 4200 Portable
zNose of Electronic Sensor Technology, LP), but mainly as labora-
tory instruments (e.g., FOX series of ALPHA M.O.S. or LibraNOSE of
Technobiochip) using matrix arrays ranging from 8 to 32 sensors.
However, the above-mentioned restrictions (headspace generation
and sensors response) are obviously the cause of difficulties arising
when trying to achieve robust sensor correlations with reference
techniques (Mielle and Marquis, 2001). As a consequence, it is not
possible to use systematically the EN, not even in industry quality
laboratories, without previously carrying out an exhaustive study
to identify, control and eliminate those sources of variation that
affect the EN measurements for every specific application. Che
Harun et al. (2009) proposed a new architecture for a new gen-
eration of electronic noses named e-Mucosa. The system combines
two odor separation columns with three miniaturized sensor arrays
of 200 chemoresistive sensors each, in a portable device with inte-
grated electronics and microfluidic components. A new dimension
appears in the data matrix, working with the pattern recognition
system in this case with spatio-temporal signals.

The construction of integrated systems that use an array of
chemical sensors for electronic nose devices or auto-analyzers of
high specificity needs: (1) to design new sensor technologies (sen-
sitive layers, transducers) or to improve the existing ones, and
to improve the automated manufacturing technologies to elimi-
nate batch-to-batch variability so as to make them appropriate for
commercial mass production, and (2) the integration of the sen-
sor array with an appropriate sample extraction system, fluidics,
sensor/sample interface and dedicated electronics. These systems
should be coupled to Multisensor Data Fusion (MDF) technology
(including signal processing, pattern recognition, statistical esti-
mation, artificial intelligence, and control theory) to fuse data from
multiple sensors in order to improve the accuracy of the estima-
tion of the environment (Huang et al., 2007). Finally, there are at
least two other developments that are expected to have significant
impact in the area of (bio)sensors: the laboratory in a chip, and nan-
otechnology: metal-oxide semiconducting nanowires or nanotubes
can be used for the construction of, for example, gas sensors and
electrochemical biosensors. These quasi-one-dimensional nanos-
tructures are essential for the advancement of chemical sensors

and will have important impact on the exploration of nanoscale
devices, sensors, and detectors using electric, optical, electrochem-
ical and magnetic transducers (Liu, 2008; Xia et al., 2010), for the
fabrication of credit-card sized microlaboratories and even for in
vivo detection.
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Table 5
Summary of recent wireless sensing technology (WST) applications in specialty crops.

Category Subject Reference

WSN Sensor network configurations and applic ations for vineyards Burrell et al. (2004)
WSN addressing heat summation and potential frost damage in wine production Beckwith et al. (2004)
WSN ZigBee based remote sensing network Morais et al. (2008)
WSN Pest control. Fighting phytophtora in a potato field Baggio (2005)
WSN Distributed greenhouse control Gonda and Cugnasca (2006)
WSN Monitor and control the environment in greenhouses with melon and cabbage Yoo et al. (2007)
WSN Measuring substrate water, temperature, electrical conductivity, daily

photosynthetic radiation and leaf wetness in real-time
Lea-Cox et al. (2007)

WSN Monitoring system based on ZigBee for greenhouses Zhou et al. (2007)
WSN Measuring differences in spatial temperature and humidity in Greenhouse

Horticulture
van Tuijl et al. (2008)

RFID Imaging and environmental sensing in greenhouses Yang et al. (2008)
Wireless sensor node Monitoring greenhouses Wang et al. (2008)
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Wireless sensor node Measuring soil parameters in precision h
salinity and electrical conductivity)

WSN Monitoring refrigerated chamber in who

0. Wireless sensing in specialty crops

The use of wireless sensor technologies (WST) in specialty crops
ffers new features both in terms of sensing and communications
hat never have been available before. Recent advances in wireless
ensor networking (WSN) technology have led to the develop-
ent of low-cost, low power, multifunctional sensor nodes. Sensor

odes enable environment sensing together with data processing.
hey are able to network with other sensors systems and exchange
ata with external users. The application of this technology for
onitoring crops that are intensively cultivated is new, since the

ecessary hardware has only recently become available. However,
ome applications have been demonstrated for specialty crops (see
able 5).

WSN is one of the most significant technologies in the 21st cen-
ury. RFID was developed for identification purposes, but growing
nterest in the many other possible applications has led to the devel-
pment of a new range of wireless sensor devices based on RFID.
he main difference between a WSN and a RFID system is that RFID
evices have no cooperative capabilities, while WSN allow differ-
nt network topologies and multihop communication. A multihop
etwork is dynamically self-organized, with the nodes establish-

ng and maintaining mesh connectivity among themselves. Motes
small single nodes) can form networks and cooperate according
o various models and architectures. They come with miniaturized

ounted sensors that allow, in a small space (2.5 cm × 5 cm × 5 cm),
he gathering of data not only just about temperature, but also
elative humidity, acceleration, shock and light (Ruiz-Garcia et al.,
009). In the case of RFID, there are commercial active and semi-
assive tags that can collect temperature information (Amador et
l., 2009; Jedermann et al., 2009). Other semi-passive tags outfitted
ith sensors are under development, like for humidity (Chang et

l., 2007; Abad et al., 2009), shock/vibration (Todd et al., 2009), light
Cho et al., 2005; Abad et al., 2009), pH (Steinberg and Steinberg,
009) and concentration of gases such as acetaldehyde or ethylene
Vergara et al., 2006). Biosensor tags are also being investigated.
hese tags could be used for detecting bacterial contamination in
ood products along the supply chain (Wentworth, 2003).

Another advantage for wireless sensor devices is the feasibility
f installation in places where cabling is impossible, such as large
elds (Morais et al., 2008) or embedded within the implements,
hich brings their readings closer to the true in situ properties of
rops (Ruiz-Garcia et al., 2009).
Most of the applications of wireless sensors in specialty crops

ave been in monitoring environmental and growing conditions, in
eld and in the greenhouse. Only with a WSN is it possible to moni-
or a whole orchard deploying 20 or 30 sensors per hectare, or track
ulture (temperature, humidity, Lopez et al. (2009)

storage Ruiz-Garcia et al. (2008)

the temperature in each flower pot in a greenhouse; these may be
distributed in plots averaging for example 4 ha in size and situated
up to 10 km apart (Lopez et al., 2009). In these situations, moni-
toring is impossible with standard cabling technologies. Different
configurations have been investigated for monitoring vineyards:
(Burrell et al., 2004) described a variety of sensor network configu-
rations and applications that can address different priorities in the
vineyard; in field experiments up to 198 sensors and 50 nodes were
deployed in about 9 ha of vineyards to send data to a remote server
(Bencini et al., 2009).

Beckwith et al. (2004) implemented a WSN consisting of 65
motes of 916 MHz, with the aim of addressing two important
parameters in wine production: heat summation and potential frost
damage. Morais et al. (2008) showed the feasibility of a ZigBee
based remote sensing network, where batteries were recharged
with energy harvested from up to three sources (photonic energy,
kinetic energy from moving water in irrigation pipes and from
wind).

Pest and disease control is an important field for the applica-
tion of WST in specialty crops: Baggio (2005) deployed a WSN for
fighting phytophtora infection in a potato field, which depends on
the climatological conditions. 868 and 916 MHz motes were used
for measuring humidity and temperature coupled with predicting
models (Baggio, 2005).

Greenhouse production can greatly benefit from WST. The first
application of WSN in a greenhouse was reported in the year
2003; it was a monitoring and control system developed by means
of Bluetooth (Liu and Ying, 2003). Since that year, several appli-
cations have been developed, most of them making use of IEEE
802.15.4/ZigBee protocol (IEEE, 2003; Gonda and Cugnasca, 2006;
Lea-Cox et al., 2007; Liu et al., 2007; Yoo et al., 2007; van Tuijl et al.,
2008), including multi-spectral imaging for remote sensing of the
canopy of seedlings (Wang et al., 2008; Yang et al., 2008).

The most advanced systems integrate a variety of sensors, which
can measure substrate water, soil and air temperatures, soil electri-
cal conductivity, daily photosynthetic radiation and leaf wetness in
real-time. Resulting benefits that have been demonstrated include
control for improved plant growth, more efficient water and fer-
tilizer applications, together with a reduction in disease problems
related to over-watering, and therefore for optimizing quality of
the crops.

Further important applications showing high potential are mon-

itoring fruit and vegetable containers and cold-storage facilities,
with or without controlled atmosphere (Ruiz-Garcia et al., 2008) or
monitoring quality and senescence of specialty crops during trans-
port (Ruiz-Garcia, 2008). Many other potential applications in the
field and greenhouse, and in relation to quality and safety of prod-
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cts and to precision farming, can be envisaged. Wireless sensor
echnologies hold an important niche in fruit and vegetable quality
esearch laboratories.

1. Summary and conclusions

This review has attempted to provide an overview of existing
nd promising sensing technologies with an emphasis on their cur-
ent and future application potential for the specialty crop industry.
everal technologies were reviewed, mainly: (1) electromagnetic
ensors, spectroscopic and computer vision; (2) mechanical con-
act and acoustic sensors; (3) biosensors; and (4) wireless sensors
etworks.

Advances in laboratory instrumentation have made it possible
o introduce a variety of sensors for practical applications in spe-
ialty crops, but the transfer of the promising, and in many cases
roven techniques to the industry is taking place at slow pace. Com-
uter vision-based online fruit grading systems are already in use in
urope and the USA (Kondo, 2010); however, they are only used fort
asic color and size measurements. Hence, there are great oppor-
unities for turning these promising or proven techniques into
omputerized and automated equipment for commercial applica-
ions, given that:

Computer vision linked to robotics has already been demon-
strated as a basic component of automated operations in many
industries.
Machine vision is fast, cost-effective and easy to automate, and
can operate under rugged, hostile environments.
Problems such as dust, water spills, product residues or poten-
tial light source variations have already be solved in commercial
application of NIR-based technology.
Automation and robotics are already present in some operations
for many industries. Unlike conventional machines, automated
systems are able to handle a great amount of information.
However, understanding of the diversity and complexity of bio-
material properties is needed in development of sensors and their
systems.

As computer capabilities and processing speed are continually
mproving, the emergence of new spectral regions (MIR, X-rays),
MR and photoluminescence, and multi- and hyperspectral imag-

ng is likely to present great opportunities in quality and safety
nspection of specialty crops. However, these emerging technolo-
ies will need further research efforts in order to meet the online
nspection requirements, and such efforts have already begun.

Moreover, there is a need for portable equipment for use in
he field and packinghouse as a support for mechanised and auto-

ated processes. Portable, on-site sensing networks that integrate
nformation collection, processing and analysis, and management
re needed for on-tree monitoring of the quality and condition of
pecialty crops.

For improving management decisions, sensor networks based
n wireless communication show a high capability of increas-
ng sensing capacity for specialty crop production and quality

onitoring. Ornamentals production systems have a different
nfrastructural and commercial environment, and the application
f the sensing principles is scarce. However, the techniques pre-
ented in this paper, especially computer vision, are shown to be
ery appropriate for this sector.

Logistics management and traceability need the development

f sensors networks which are reliable, easy to implement and of
ow-cost. RFID readers with onboard environmental and volatiles
ensing capabilities, together with flexible tags, show great promise
or monitoring product quality and safety in large containers and
ong-distance transportation.
nics in Agriculture 74 (2010) 176–194

In conclusion, many sensing technologies have been developed
in the past, and further research and development are needed to
meet the needs of specialty crop industries. Greater contribution
and involvement from the equipment manufacturing industry is
essential for moving the developed technologies from research
laboratories to specialty crop processing and packing houses. The
success of any online technology for sorting and grading fruit and
vegetables will be dependent upon its added commercial value for
the specialty crop industry. Only when consumers are willing to
pay premium prices for, e.g., extra sweet fruit, will auctions and
packinghouses adopt such new grading lines and change their qual-
ity grading standards that are now almost exclusively based on
external appearance.
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